A Global Occlusion-Aware Approach to Self-Supervised Monocular Visual Odometry

Author:

Lu Yao,Xu Xiaoli,Ding Mingyu,Lu Zhiwu,Xiang Tao

Abstract

Self-Supervised monocular visual odometry (VO) is often cast into a view synthesis problem based on depth and camera pose estimation. One of the key challenges is to accurately and robustly estimate depth with occlusions and moving objects in the scene. Existing methods simply detect and mask out regions of occlusions locally by several convolutional layers, and then perform only partial view synthesis in the rest of the image. However, occlusion and moving object detection is an unsolved problem itself which requires global layout information. Inaccurate detection inevitably results in incorrect depth as well as pose estimation. In this work, instead of locally detecting and masking out occlusions and moving objects, we propose to alleviate their negative effects on monocular VO implicitly but more effectively from two global perspectives. First, a multi-scale non-local attention module, consisting of both intra-stage augmented attention and cascaded across-stage attention, is proposed for robust depth estimation given occlusions, alleviating the impacts of occlusions via global attention modeling. Second, adversarial learning is introduced in view synthesis for monocular VO. Unlike existing methods that use pixel-level losses on the quality of synthesized views, we enforce the synthetic view to be indistinguishable from the real one at the scene-level. Such a global constraint again helps cope with occluded and moving regions. Extensive experiments on the KITTI dataset show that our approach achieves new state-of-the-art in both pose estimation and depth recovery.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emergent Cooperative Behavior in Distributed Target Tracking with Unknown Occlusions;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

2. Transformer-Based Self-Supervised Monocular Depth and Visual Odometry;IEEE Sensors Journal;2023-01-15

3. A review on monocular tracking and mapping: from model-based to data-driven methods;The Visual Computer;2022-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3