Stock Selection via Spatiotemporal Hypergraph Attention Network: A Learning to Rank Approach

Author:

Sawhney Ramit,Agarwal Shivam,Wadhwa Arnav,Derr Tyler,Shah Rajiv Ratn

Abstract

Quantitative trading and investment decision making are intricate financial tasks that rely on accurate stock selection. Despite advances in deep learning that have made significant progress in the complex and highly stochastic stock prediction problem, modern solutions face two significant limitations. They do not directly optimize the target of investment in terms of profit, and treat each stock as independent from the others, ignoring the rich signals between related stocks' temporal price movements. Building on these limitations, we reformulate stock prediction as a learning to rank problem and propose STHAN-SR, a neural hypergraph architecture for stock selection. The key novelty of our work is the proposal of modeling the complex relations between stocks through a hypergraph and a temporal Hawkes attention mechanism to tailor a new spatiotemporal attention hypergraph network architecture to rank stocks based on profit by jointly modeling stock interdependence and the temporal evolution of their prices. Through experiments on three markets spanning over six years of data, we show that STHAN-SR significantly outperforms state-of-the-art neural stock forecasting methods. We validate our design choices through ablative and exploratory analyses over STHAN-SR's spatial and temporal components and demonstrate its practical applicability.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3