Online Learning in Variable Feature Spaces under Incomplete Supervision

Author:

He Yi,Yuan Xu,Chen Sheng,Wu Xindong

Abstract

This paper explores a new online learning problem where the input sequence lives in an over-time varying feature space and the ground-truth label of any input point is given only occasionally, making online learners less restrictive and more applicable. The crux in this setting lies in how to exploit the very limited labels to efficiently update the online learners. Plausible ideas such as propagating labels from labeled points to their neighbors through uncovering the point-wise geometric relations face two challenges: (1) distance measurement fails to work as different points may be described by disparate sets of features and (2) storing the geometric shape, which is formed by all arrived points, is unrealistic in an online setting. To address these challenges, we first construct a universal feature space that accumulates all observed features, making distance measurement feasible. Then, we use manifolds to represent the geometric shapes and approximate them in a sparse means, making manifolds computational and memory tractable in online learning. We frame these two building blocks into a regularized risk minimization algorithm. Theoretical analysis and empirical evidence substantiate the viability and effectiveness of our proposal.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive survey of recent research on profile data analysis;Journal of Quality Technology;2024-09-06

2. Online Learning for Data Streams With Incomplete Features and Labels;IEEE Transactions on Knowledge and Data Engineering;2024-09

3. Online Feature Selection With Varying Feature Spaces;IEEE Transactions on Knowledge and Data Engineering;2024-09

4. A novel learning method for feature evolvable streams;Evolving Systems;2024-05-11

5. OSFS‐Vague: Online streaming feature selection algorithm based on vague set;CAAI Transactions on Intelligence Technology;2024-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3