Amodal Segmentation Based on Visible Region Segmentation and Shape Prior

Author:

Xiao Yuting,Xu Yanyu,Zhong Ziming,Luo Weixin,Li Jiawei,Gao Shenghua

Abstract

Almost all existing amodal segmentation methods make the inferences of occluded regions by using features corresponding to the whole image. This is against the human's amodal perception, where human uses the visible part and the shape prior knowledge of the target to infer the occluded region. To mimic the behavior of human and solve the ambiguity in the learning, we propose a framework, it firstly estimates a coarse visible mask and a coarse amodal mask. Then based on the coarse prediction, our model infers the amodal mask by concentrating on the visible region and utilizing the shape prior in the memory. In this way, features corresponding to background and occlusion can be suppressed for amodal mask estimation. Consequently, the amodal mask would not be affected by what the occlusion is given the same visible regions. The leverage of shape prior makes the amodal mask estimation more robust and reasonable. Our proposed model is evaluated on three datasets. Experiments show that our proposed model outperforms existing state-of-the-art methods. The visualization of shape prior indicates that the category-specific feature in the codebook has certain interpretability. The code is available at https://github.com/YutingXiao/Amodal-Segmentation-Based-on-Visible-Region-Segmentation-and-Shape-Prior.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Object-level Scene Deocclusion;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

2. ShapeFormer: Shape Prior Visible-to-Amodal Transformer-based Amodal Instance Segmentation;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Opnet: Deep Occlusion Perception Network with Boundary Awareness for Amodal Instance Segmentation;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

4. Amodal Intra-class Instance Segmentation: Synthetic Datasets and Benchmark;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

5. MUVA: A New Large-Scale Benchmark for Multi-view Amodal Instance Segmentation in the Shopping Scenario;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3