Linearly Replaceable Filters for Deep Network Channel Pruning

Author:

Joo Donggyu,Yi Eojindl,Baek Sunghyun,Kim Junmo

Abstract

Convolutional neural networks (CNNs) have achieved remarkable results; however, despite the development of deep learning, practical user applications are fairly limited because heavy networks can be used solely with the latest hardware and software supports. Therefore, network pruning is gaining attention for general applications in various fields. This paper proposes a novel channel pruning method, Linearly Replaceable Filter (LRF), which suggests that a filter that can be approximated by the linear combination of other filters is replaceable. Moreover, an additional method called Weights Compensation is proposed to support the LRF method. This is a technique that effectively reduces the output difference caused by removing filters via direct weight modification. Through various experiments, we have confirmed that our method achieves state-of-the-art performance in several benchmarks. In particular, on ImageNet, LRF-60 reduces approximately 56% of FLOPs on ResNet-50 without top-5 accuracy drop. Further, through extensive analyses, we proved the effectiveness of our approaches.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weight-adaptive channel pruning for CNNs based on closeness-centrality modeling;Applied Intelligence;2023-12-07

2. Lottery Jackpots Exist in Pre-Trained Models;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-12

3. Reconstructing Pruned Filters using Cheap Spatial Transformations;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

4. Performance-Aware Approximation of Global Channel Pruning for Multitask CNNs;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-08

5. WHC: Weighted Hybrid Criterion for Filter Pruning on Convolutional Neural Networks;ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2023-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3