Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning

Author:

Chen Chao,Li Dongsheng,Yan Junchi,Huang Hanchi,Yang Xiaokang

Abstract

One-bit matrix completion is an important class of positive-unlabeled (PU) learning problems where the observations consist of only positive examples, e.g., in top-N recommender systems. For the first time, we show that 1-bit matrix completion can be formulated as the problem of recovering clean graph signals from noise-corrupted signals in hypergraphs. This makes it possible to enjoy recent advances in graph signal learning. Then, we propose the spectral graph matrix completion (SGMC) method, which can recover the underlying matrix in distributed systems by filtering the noisy data in the graph frequency domain. Meanwhile, it can provide micro- and macro-level explanations by following vertex-frequency analysis. To tackle the computational and memory issue of performing graph signal operations on large graphs, we construct a scalable Nystrom algorithm which can efficiently compute orthonormal eigenvectors. Furthermore, we also develop polynomial and sparse frequency filters to remedy the accuracy loss caused by the approximations. We demonstrate the effectiveness of our algorithms on top-N recommendation tasks, and the results on three large-scale real-world datasets show that SGMC can outperform state-of-the-art top-N recommendation algorithms in accuracy while only requiring a small fraction of training time compared to the baselines.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Latent side-information dynamic augmentation for incremental recommendation;Knowledge and Information Systems;2024-06-26

2. Hierarchical Graph Signal Processing for Collaborative Filtering;Proceedings of the ACM Web Conference 2024;2024-05-13

3. Hypergraphs with Attention on Reviews for Explainable Recommendation;Lecture Notes in Computer Science;2024

4. Pyramid Graph Neural Network: A Graph Sampling and Filtering Approach for Multi-scale Disentangled Representations;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

5. Collaborative Residual Metric Learning;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3