Category Dictionary Guided Unsupervised Domain Adaptation for Object Detection

Author:

Li Shuai,Huang Jianqiang,Hua Xian-Sheng,Zhang Lei

Abstract

Unsupervised domain adaption (UDA) is a promising solution to enhance the generalization ability of a model from a source domain to a target domain without manually annotating labels for target data. Recent works in cross-domain object detection mostly resort to adversarial feature adaptation to match the marginal distributions of two domains. However, perfect feature alignment is hard to achieve and is likely to cause negative transfer due to the high complexity of object detection. In this paper, we propose a category dictionary guided (CDG) UDA model for cross-domain object detection, which learns category-specific dictionaries from the source domain to represent the candidate boxes in target domain. The representation residual can be used for not only pseudo label assignment but also quality (e.g., IoU) estimation of the candidate box. A residual weighted self-training paradigm is then developed to implicitly align source and target domains for detection model training. Compared with decision boundary based classifiers such as softmax, the proposed CDG scheme can select more informative and reliable pseudo-boxes. Experimental results on benchmark datasets show that the proposed CDG significantly exceeds the state-of-the-arts in cross-domain object detection.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3