Traffic Flow Prediction with Vehicle Trajectories

Author:

Li Mingqian,Tong Panrong,Li Mo,Jin Zhongming,Huang Jianqiang,Hua Xian-Sheng

Abstract

This paper proposes a spatiotemporal deep learning framework, Trajectory-based Graph Neural Network (TrGNN), that mines the underlying causality of flows from historical vehicle trajectories and incorporates that into road traffic prediction. The vehicle trajectory transition patterns are studied to explicitly model the spatial traffic demand via graph propagation along the road network; an attention mechanism is designed to learn the temporal dependencies based on neighborhood traffic status; and finally, a fusion of multi-step prediction is integrated into the graph neural network design. The proposed approach is evaluated with a real-world trajectory dataset. Experiment results show that the proposed TrGNN model achieves over 5% error reduction when compared with the state-of-the-art approaches across all metrics for normal traffic, and up to 14% for atypical traffic during peak hours or abnormal events. The advantage of trajectory transitions especially manifest itself in inferring high fluctuation of flows as well as non-recurrent flow patterns.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-attention gated temporal graph convolution neural Network for traffic flow forecasting;Cluster Computing;2024-07-04

2. Adopting Ensemble Learning and Machine Learning Techniques for Predictive Modeling in Traffic Data Analysis;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

3. Trajectory-based clustering for enhanced attractive region mining in urban taxi services;International Journal of Digital Earth;2024-05-22

4. Air Traffic Flow Prediction with Spatiotemporal Knowledge Distillation Network;Journal of Advanced Transportation;2024-05-15

5. Efficient Learning-based Top-k Representative Similar Subtrajectory Query;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3