Appearance-Motion Memory Consistency Network for Video Anomaly Detection

Author:

Cai Ruichu,Zhang Hao,Liu Wen,Gao Shenghua,Hao Zhifeng

Abstract

Abnormal event detection in the surveillance video is an essential but challenging task, and many methods have been proposed to deal with this problem. The previous methods either only consider the appearance information or directly integrate the results of appearance and motion information without considering their endogenous consistency semantics explicitly. Inspired by the rule humans identify the abnormal frames from multi-modality signals, we propose an Appearance-Motion Memory Consistency Network (AMMC-Net). Our method first makes full use of the prior knowledge of appearance and motion signals to explicitly capture the correspondence between them in the high-level feature space. Then, it combines the multi-view features to obtain a more essential and robust feature representation of regular events, which can significantly increase the gap between an abnormal and a regular event. In the anomaly detection phase, we further introduce a commit error in the latent space joint with the prediction error in pixel space to enhance the detection accuracy. Solid experimental results on various standard datasets validate the effectiveness of our approach.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3