YOLObile: Real-Time Object Detection on Mobile Devices via Compression-Compilation Co-Design

Author:

Cai Yuxuan,Li Hongjia,Yuan Geng,Niu Wei,Li Yanyu,Tang Xulong,Ren Bin,Wang Yanzhi

Abstract

The rapid development and wide utilization of object detection techniques have aroused attention on both accuracy and speed of object detectors. However, the current state-of-the-art object detection works are either accuracy-oriented using a large model but leading to high latency or speed-oriented using a lightweight model but sacrificing accuracy. In this work, we propose YOLObile framework, a real-time object detection on mobile devices via compression-compilation co-design. A novel block-punched pruning scheme is proposed for any kernel size. To improve computational efficiency on mobile devices, a GPU-CPU collaborative scheme is adopted along with advanced compiler-assisted optimizations. Experimental results indicate that our pruning scheme achieves 14x compression rate of YOLOv4 with 49.0 mAP. Under our YOLObile framework, we achieve 17 FPS inference speed using GPU on Samsung Galaxy S20. By incorporating our proposed GPU-CPU collaborative scheme, the inference speed is increased to 19.1 FPS, and outperforms the original YOLOv4 by 5x speedup. Source code is at: https://github.com/nightsnack/YOLObile.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ESFD-YOLOv8n: Early Smoke and Fire Detection Method Based on an Improved YOLOv8n Model;Fire;2024-08-27

2. A comprehensive survey of deep learning-based lightweight object detection models for edge devices;Artificial Intelligence Review;2024-08-10

3. FPGA-based CNN Acceleration using Pattern-Aware Pruning;2024 IEEE 6th International Conference on AI Circuits and Systems (AICAS);2024-04-22

4. Towards lightweight military object detection;Journal of Intelligent & Fuzzy Systems;2024-04-18

5. Scalable Solutions for Efficient Real-Time Distributed Video Analytics with Vehicle Detection on CPU Edge Nodes;Proceedings of the 2024 7th International Conference on Computers in Management and Business;2024-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3