Graph Heterogeneous Multi-Relational Recommendation

Author:

Chen Chong,Ma Weizhi,Zhang Min,Wang Zhaowei,He Xiuqiang,Wang Chenyang,Liu Yiqun,Ma Shaoping

Abstract

Traditional studies on recommender systems usually leverage only one type of user behaviors (the optimization target, such as purchase), despite the fact that users also generate a large number of various types of interaction data (e.g., view, click, add-to-cart, etc). Generally, these heterogeneous multi-relational data provide well-structured information and can be used for high-quality recommendation. Early efforts towards leveraging these heterogeneous data fail to capture the high-hop structure of user-item interactions, which are unable to make full use of them and may only achieve constrained recommendation performance. In this work, we propose a new multi-relational recommendation model named Graph Heterogeneous Collaborative Filtering (GHCF). To explore the high-hop heterogeneous user-item interactions, we take the advantages of Graph Convolutional Network (GCN) and further improve it to jointly embed both representations of nodes (users and items) and relations for multi-relational prediction. Moreover, to fully utilize the whole heterogeneous data, we perform the advanced efficient non-sampling optimization under a multi-task learning framework. Experimental results on two public benchmarks show that GHCF significantly outperforms the state-of-the-art recommendation methods, especially for cold-start users who have few primary item interactions. Further analysis verifies the importance of the proposed embedding propagation for modelling high-hop heterogeneous user-item interactions, showing the rationality and effectiveness of GHCF. Our implementation has been released (https://github.com/chenchongthu/GHCF).

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explicit Behavior Interaction with Heterogeneous Graph for Multi-behavior Recommendation;Data Science and Engineering;2024-01-19

2. GPR-OPT: A Practical Gaussian optimization criterion for implicit recommender systems;Information Processing & Management;2024-01

3. A cascaded embedding method with graph neural network for multi-behavior recommendation;International Journal of Machine Learning and Cybernetics;2023-12-13

4. Multi-Behavior Job Recommendation with Dynamic Availability;Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region;2023-11-26

5. Multi-aspect Graph Contrastive Learning for Review-enhanced Recommendation;ACM Transactions on Information Systems;2023-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3