Towards a Unifying Framework for Formal Theories of Novelty

Author:

Boult Terrance,Grabowicz Przemyslaw,Prijatelj Derek,Stern Roni,Holder Lawrence,Alspector Joshua,M. Jafarzadeh Mohsen,Ahmad Toqueer,Dhamija Akshay,Li Chunchun,Cruz Steve,Shrivastava Abhinav,Vondrick Carl,Walter Scheirer

Abstract

Managing inputs that are novel, unknown, or out-of-distribution is critical as an agent moves from the lab to the open world. Novelty-related problems include being tolerant to novel perturbations of the normal input, detecting when the input includes novel items, and adapting to novel inputs. While significant research has been undertaken in these areas, a noticeable gap exists in the lack of a formalized definition of novelty that transcends problem domains. As a team of researchers spanning multiple research groups and different domains, we have seen, first hand, the difficulties that arise from ill-specified novelty problems, as well as inconsistent definitions and terminology. Therefore, we present the first unified framework for formal theories of novelty and use the framework to formally define a family of novelty types. Our framework can be applied across a wide range of domains, from symbolic AI to reinforcement learning, and beyond to open world image recognition. Thus, it can be used to help kick-start new research efforts and accelerate ongoing work on these important novelty-related problems.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI misinformation detectors can’t save us from tyranny—at least not yet;Bulletin of the Atomic Scientists;2024-09-02

2. Novelty Accommodating Multi-agent Planning in High Fidelity Simulated Open World;Lecture Notes in Computer Science;2024

3. Open-World Continual Learning: A Framework;Synthesis Lectures on Human Language Technologies;2024

4. The Difficulty of Novelty Detection and Adaptation in Physical Environments;Lecture Notes in Computer Science;2023-11-27

5. Measuring Human Perception to Improve Open Set Recognition;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3