Author:
Altay Fatih,Sánchez Guillermo Ramón,James Yanli,Faraone Stephen V.,Velipasalar Senem,Salekin Asif
Abstract
Alzheimer's disease is one of the diseases that mostly affects older people without being a part of aging. The most common symptoms include problems with communicating and abstract thinking, as well as disorientation. It is important to detect Alzheimer's disease in early stages so that cognitive functioning would be improved by medication and training. In this paper, we propose two attention model networks for detecting Alzheimer's disease from MRI images to help early detection efforts at the preclinical stage. We also compare the performance of these two attention network models with a baseline model. Recently available OASIS-3 Longitudinal Neuroimaging, Clinical, and Cognitive Dataset is used to train, evaluate and compare our models. The novelty of this research resides in the fact that we aim to detect Alzheimer's disease when all the parameters, physical assessments, and clinical data state that the patient is healthy and showing no symptoms.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献