Interpretable Clustering on Dynamic Graphs with Recurrent Graph Neural Networks

Author:

Yao Yuhang,Joe-Wong Carlee

Abstract

We study the problem of clustering nodes in a dynamic graph, where the connections between nodes and nodes' cluster memberships may change over time, e.g., due to community migration. We first propose a dynamic stochastic block model that captures these changes, and a simple decay-based clustering algorithm that clusters nodes based on weighted connections between them, where the weight decreases at a fixed rate over time. This decay rate can then be interpreted as signifying the importance of including historical connection information in the clustering. However, the optimal decay rate may differ for clusters with different rates of turnover. We characterize the optimal decay rate for each cluster and propose a clustering method that achieves almost exact recovery of the true clusters. We then demonstrate the efficacy of our clustering algorithm with optimized decay rates on simulated graph data. Recurrent neural networks (RNNs), a popular algorithm for sequence learning, use a similar decay-based method, and we use this insight to propose two new RNN-GCN (graph convolutional network) architectures for semi-supervised graph clustering. We finally demonstrate that the proposed architectures perform well on real data compared to state-of-the-art graph clustering algorithms.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3