Testing Independence Between Linear Combinations for Causal Discovery

Author:

Zhang Hao,Zhang Kun,Zhou Shuigeng,Guan Jihong,Zhang Ji

Abstract

Recently, regression based conditional independence (CI) tests have been employed to solve the problem of causal discovery. These methods provide an alternative way to test for CI by transforming CI to independence between residuals. Generally, it is nontrivial to check for independence when these residuals are linearly uncorrelated. With the ability to represent high-order moments, kernel-based methods are usually used to achieve this goal, but at a cost of considerable time. In this paper, we investigate the independence between two linear combinations under linear non-Gaussian structural equation model (SEM). We show that generally the 1-st to 4-th moments of the two linear combinations contain enough information to infer whether or not they are independent. The proposed method provides a simpler but more effective way to measure CIs, with only calculating the 1-st to 4-th moments of the input variables. When applied to causal discovery, the proposed method outperforms kernel-based methods in terms of both speed and accuracy. which is validated by extensive experiments.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel data enhancement approach to DAG learning with small data samples;Applied Intelligence;2023-09-15

2. FPGA-Accelerated Causal Discovery with Conditional Independence Test Prioritization;2023 33rd International Conference on Field-Programmable Logic and Applications (FPL);2023-09-04

3. Normalizing flows for conditional independence testing;Knowledge and Information Systems;2023-08-28

4. Co-Design of Algorithm and FPGA Accelerator for Conditional Independence Test;2023 IEEE 34th International Conference on Application-specific Systems, Architectures and Processors (ASAP);2023-07

5. Extending Hilbert–Schmidt Independence Criterion for Testing Conditional Independence;Entropy;2023-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3