Diverse Knowledge Distillation for End-to-End Person Search

Author:

Zhang Xinyu,Wang Xinlong,Bian Jia-Wang,Shen Chunhua,You Mingyu

Abstract

Person search aims to localize and identify a specific person from a gallery of images. Recent methods can be categorized into two groups, i.e., two-step and end-to-end approaches. The former views person search as two independent tasks and achieves dominant results using separately trained person detection and re-identification (Re-ID) models. The latter performs person search in an end-to-end fashion. Although the end-to-end approaches yield higher inference efficiency, they largely lag behind those two-step counterparts in terms of accuracy. In this paper, we argue that the gap between the two kinds of methods is mainly caused by the Re-ID sub-networks of end-to-end methods. To this end, we propose a simple yet strong end-to-end network with diverse knowledge distillation to break the bottleneck. We also design a spatial-invariant augmentation to assist model to be invariant to inaccurate detection results. Experimental results on the CUHK-SYSU and PRW datasets demonstrate the superiority of our method against existing approaches -- it achieves on par accuracy with state-of-the-art two-step methods while maintaining high efficiency due to the single joint model. Code is available at: https://git.io/DKD-PersonSearch.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards effective person search with deep learning: A survey from systematic perspective;Pattern Recognition;2024-08

2. Joint discriminative representation learning for end-to-end person search;Pattern Recognition;2024-03

3. Learning Scene-Pedestrian Graph for End-to-End Person Search;IEEE Transactions on Industrial Informatics;2024-02

4. Multi-Query Person Search with Transformers;Lecture Notes in Computer Science;2024

5. Ground-to-Aerial Person Search: Benchmark Dataset and Approach;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3