Sketch Generation with Drawing Process Guided by Vector Flow and Grayscale

Author:

Tong Zhengyan,Chen Xuanhong,Ni Bingbing,Wang Xiaohang

Abstract

We propose a novel image-to-pencil translation method that could not only generate high-quality pencil sketches but also offer the drawing process. Existing pencil sketch algorithms are based on texture rendering rather than the direct imitation of strokes, making them unable to show the drawing process but only a final result. To address this challenge, we first establish a pencil stroke imitation mechanism. Next, we develop a framework with three branches to guide stroke drawing: the first branch guides the direction of the strokes, the second branch determines the shade of the strokes, and the third branch enhances the details further. Under this framework's guidance, we can produce a pencil sketch by drawing one stroke every time. Our method is fully interpretable. Comparison with existing pencil drawing algorithms shows that our method is superior to others in terms of texture quality, style, and user evaluation. Our code and supplementary material are now available at: https://github.com/TZYSJTU/Sketch-Generation-withDrawing-Process-Guided-by-Vector-Flow-and-Grayscale

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Text-guided image-to-sketch diffusion models;Knowledge-Based Systems;2024-11

2. A Study of a Drawing Exactness Assessment Method Using Localized Normalized Cross-Correlations in a Portrait Drawing Learning Assistant System;Computers;2024-08-23

3. Interactive Image Style Transfer Guided by Graffiti;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

4. CLIPascene: Scene Sketching with Different Types and Levels of Abstraction;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

5. Feature-preserving color pencil drawings from photographs;Computational Visual Media;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3