Learning Intact Features by Erasing-Inpainting for Few-shot Classification

Author:

Li Junjie,Wang Zilei,Hu Xiaoming

Abstract

Few-shot classification aims to categorize the samples from unseen classes with only few labeled samples. To address such a challenge, many methods exploit a base set consisting of massive labeled samples to learn an instance embedding function, i.e., image feature extractor, and it is expected to possess good transferability among different tasks. Such characteristics of few-shot learning are essentially different from that of traditional image classification only pursuing to get discriminative image representations. In this paper, we propose to learn intact features by erasing-inpainting for few-shot classification. Specifically, we argue that extracting intact features of target objects is more transferable, and then propose a novel cross-set erasing-inpainting (CSEI) method. CSEI processes the images in the support set using erasing and inpainting, and then uses them to augment the query set of the same task. Consequently, the feature embedding produced by our proposed method can contain more complete information of target objects. In addition, we propose task-specific feature modulation to make the features adaptive to the current task. The extensive experiments on two widely used benchmarks well demonstrates the effectiveness of our proposed method, which can consistently get considerable performance gains for different baseline methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3