I3DOL: Incremental 3D Object Learning without Catastrophic Forgetting

Author:

Dong Jiahua,Cong Yang,Sun Gan,Ma Bingtao,Wang Lichen

Abstract

3D object classification has attracted appealing attentions in academic researches and industrial applications. However, most existing methods need to access the training data of past 3D object classes when facing the common real-world scenario: new classes of 3D objects arrive in a sequence. Moreover, the performance of advanced approaches degrades dramatically for past learned classes (i.e., catastrophic forgetting), due to the irregular and redundant geometric structures of 3D point cloud data. To address these challenges, we propose a new Incremental 3D Object Learning (i.e., I3DOL) model, which is the first exploration to learn new classes of 3D object continually. Specifically, an adaptive-geometric centroid module is designed to construct discriminative local geometric structures, which can better characterize the irregular point cloud representation for 3D object. Afterwards, to prevent the catastrophic forgetting brought by redundant geometric information, a geometric-aware attention mechanism is developed to quantify the contributions of local geometric structures, and explore unique 3D geometric characteristics with high contributions for classes incremental learning. Meanwhile, a score fairness compensation strategy is proposed to further alleviate the catastrophic forgetting caused by unbalanced data between past and new classes of 3D object, by compensating biased prediction for new classes in the validation phase. Experiments on 3D representative datasets validate the superiority of our I3DOL framework.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need;International Journal of Computer Vision;2024-08-31

2. Cross-Domain Few-Shot Incremental Learning for Point-Cloud Recognition;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

3. Topology-Aware Graph Convolution Network for Few-Shot Incremental 3-D Object Learning;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2024-01

4. InOR-Net: Incremental 3-D Object Recognition Network for Point Cloud Representation;IEEE Transactions on Neural Networks and Learning Systems;2023-10

5. Angular Penalty for Few-Shot Incremental 3D Object Learning;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3