Time Series Anomaly Detection with Multiresolution Ensemble Decoding

Author:

Shen Lifeng,Yu Zhongzhong,Ma Qianli,Kwok James T.

Abstract

Recurrent autoencoder is a popular model for time series anomaly detection, in which outliers or abnormal segments are identified by their high reconstruction errors. However, existing recurrent autoencoders can easily suffer from overfitting and error accumulation due to sequential decoding. In this paper, we propose a simple yet efficient recurrent network ensemble called Recurrent Autoencoder with Multiresolution Ensemble Decoding (RAMED). By using decoders with different decoding lengths and a new coarse-to-fine fusion mechanism, lower-resolution information can help long-range decoding for decoders with higher-resolution outputs. A multiresolution shape-forcing loss is further introduced to encourage decoders' outputs at multiple resolutions to match the input's global temporal shape. Finally, the output from the decoder with the highest resolution is used to obtain an anomaly score at each time step. Extensive empirical studies on real-world benchmark data sets demonstrate that the proposed RAMED model outperforms recent strong baselines on time series anomaly detection.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cluster-Wide Task Slowdown Detection in Cloud System;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised Time Series Anomaly Detection;Proceedings of the ACM Web Conference 2024;2024-05-13

3. Skip-Step Contrastive Predictive Coding for Time Series Anomaly Detection;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

4. A weakly supervised time series anomaly detection method with dual-association discrepancy;Signal, Image and Video Processing;2024-04-03

5. Broad Learning Autoencoder With Graph Structure for Data Clustering;IEEE Transactions on Knowledge and Data Engineering;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3