Two-Stream Convolution Augmented Transformer for Human Activity Recognition

Author:

Li Bing,Cui Wei,Wang Wei,Zhang Le,Chen Zhenghua,Wu Min

Abstract

Recognition of human activities is an important task due to its far-reaching applications such as healthcare system, context-aware applications, and security monitoring. Recently, WiFi based human activity recognition (HAR) is becoming ubiquitous due to its non-invasiveness. Existing WiFi-based HAR methods regard WiFi signals as a temporal sequence of channel state information (CSI), and employ deep sequential models (e.g., RNN, LSTM) to automatically capture channel-over-time features. Although being remarkably effective, they suffer from two major drawbacks. Firstly, the granularity of a single temporal point is blindly elementary for representing meaningful CSI patterns. Secondly, the time-over-channel features are also important, and could be a natural data augmentation. To address the drawbacks, we propose a novel Two-stream Convolution Augmented Human Activity Transformer (THAT) model. Our model proposes to utilize a two-stream structure to capture both time-over-channel and channel-over-time features, and use the multi-scale convolution augmented transformer to capture range-based patterns. Extensive experiments on four real experiment datasets demonstrate that our model outperforms state-of-the-art models in terms of both effectiveness and efficiency.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contrastive graph learning long and short-term interests for POI recommendation;Expert Systems with Applications;2024-03

2. SwipeFormer: Transformers for mobile touchscreen biometrics;Expert Systems with Applications;2024-03

3. Enhancing Human Activity Recognition with LoRa Wireless RF Signal Preprocessing and Deep Learning;Electronics;2024-01-06

4. WiAi-ID: Wi-Fi-Based Domain Adaptation for Appearance-Independent Passive Person Identification;IEEE Internet of Things Journal;2024-01-01

5. UniFi;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3