Rain Streak Removal via Dual Graph Convolutional Network

Author:

Fu Xueyang,Qi Qi,Zha Zheng-Jun,Zhu Yurui,Ding Xinghao

Abstract

Deep convolutional neural networks (CNNs) have become dominant in the single image de-raining area. However, most deep CNNs-based de-raining methods are designed by stacking vanilla convolutional layers, which can only be used to model local relations. Therefore, long-range contextual information is rarely considered for this specific task. To address the above problem, we propose a simple yet effective dual graph convolutional network (GCN) for single image rain removal. Specifically, we design two graphs to perform global relational modeling and reasoning. The first GCN is used to explore global spatial relations among pixels in feature maps, while the second GCN models the global relations across the channels. Compared to standard convolutional operations, the proposed two graphs enable the network to extract representations from new dimensions. To achieve the image rain removal, we further embed these two graphs and multi-scale dilated convolution into a symmetrically skip-connected network architecture. Therefore, our dual graph convolutional network is able to well handle complex and spatially long rain streaks by exploring multiple representations, e.g., multi-scale local feature, global spatial coherence and cross-channel correlation. Meanwhile, our model is easy to implement, end-to-end trainable and computationally efficient. Extensive experiments on synthetic and real data demonstrate that our method achieves significant improvements over the recent state-of-the-art methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3