Understanding Deformable Alignment in Video Super-Resolution

Author:

Chan Kelvin C.K.,Wang Xintao,Yu Ke,Dong Chao,Loy Chen Change

Abstract

Deformable convolution, originally proposed for the adaptation to geometric variations of objects, has recently shown compelling performance in aligning multiple frames and is increasingly adopted for video super-resolution. Despite its remarkable performance, its underlying mechanism for alignment remains unclear. In this study, we carefully investigate the relation between deformable alignment and the classic flow-based alignment. We show that deformable convolution can be decomposed into a combination of spatial warping and convolution. This decomposition reveals the commonality of deformable alignment and flow-based alignment in formulation, but with a key difference in their offset diversity. We further demonstrate through experiments that the increased diversity in deformable alignment yields better-aligned features, and hence significantly improves the quality of video super-resolution output. Based on our observations, we propose an offset-fidelity loss that guides the offset learning with optical flow. Experiments show that our loss successfully avoids the overflow of offsets and alleviates the instability problem of deformable alignment. Aside from the contributions to deformable alignment, our formulation inspires a more flexible approach to introduce offset diversity to flow-based alignment, improving its performance.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Deep Learning Video Super-Resolution;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-08

2. Deep progressive feature aggregation network for multi-frame high dynamic range imaging;Neurocomputing;2024-08

3. Dense video super-resolution time-differential network with feature enrichment module;Signal, Image and Video Processing;2024-07-29

4. Low Bit Rate Video Coding using VVC and DCVC-DC for River Surveillance;2024 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC);2024-07-02

5. Stereo Image Restoration via Attention-Guided Correspondence Learning;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3