Extracting Zero-shot Structured Information from Form-like Documents: Pretraining with Keys and Triggers

Author:

Cao Rongyu,Luo Ping

Abstract

In this paper, we revisit the problem of extracting the values of a given set of key fields from form-like documents. It is the vital step to support many downstream applications, such as knowledge base construction, question answering, document comprehension and so on. Previous studies ignore the semantics of the given keys by considering them only as the class labels, and thus might be incapable to handle zero-shot keys. Meanwhile, although these models often leverage the attention mechanism, the learned features might not reflect the true proxy of explanations on why humans would recognize the value for the key, and thus could not well generalize to new documents. To address these issues, we propose a Key-Aware and Trigger-Aware (KATA) extraction model. With the input key, it explicitly learns two mappings, namely from key representations to trigger representations and then from trigger representations to values. These two mappings might be intrinsic and invariant across different keys and documents. With a large training set automatically constructed based on the Wikipedia data, we pre-train these two mappings. Experiments with the fine-tuning step to two applications show that the proposed model achieves more than 70% accuracy for the extraction of zero-shot keys while previous methods all fail.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SemiDocSeg: harnessing semi-supervised learning for document layout analysis;International Journal on Document Analysis and Recognition (IJDAR);2024-06-04

2. Layout-Aware Information Extraction for Document-Grounded Dialogue;Proceedings of the 30th ACM International Conference on Multimedia;2022-10-10

3. Zero-shot Key Information Extraction from Mixed-Style Tables: Pre-training on Wikipedia;2021 IEEE International Conference on Data Mining (ICDM);2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3