Abstract
Multi-task learning (MTL) has been widely applied in Natural Language Processing. A major task and its associated auxiliary tasks share the same encoder; hence, an MTL encoder can learn the sharing abstract information between the major and auxiliary tasks. Task-specific towers are then employed upon the sharing encoder to learn task-specific information. Previous works demonstrated that exchanging information between task-specific towers yielded extra gains. This is known as soft-parameter sharing MTL. In this paper, we propose a novel gating mechanism for the bridging of MTL towers. Our method is evaluated based on aspect-based sentiment analysis and sequential metaphor identification tasks. The experiments demonstrate that our method can yield better performance than the baselines on both tasks. Based on the same Transformer backbone, we compare our gating mechanism with other information transformation mechanisms, e.g., cross-stitch, attention and vanilla gating. The experiments show that our method also surpasses these baselines.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献