Automated Model Design and Benchmarking of Deep Learning Models for COVID-19 Detection with Chest CT Scans

Author:

He Xin,Wang Shihao,Chu Xiaowen,Shi Shaohuai,Tang Jiangping,Liu Xin,Yan Chenggang,Zhang Jiyong,Ding Guiguang

Abstract

The COVID-19 pandemic has spread globally for several months. Because its transmissibility and high pathogenicity seriously threaten people's lives, it is crucial to accurately and quickly detect COVID-19 infection. Many recent studies have shown that deep learning (DL) based solutions can help detect COVID-19 based on chest CT scans. However, most existing work focuses on 2D datasets, which may result in low quality models as the real CT scans are 3D images. Besides, the reported results span a broad spectrum on different datasets with a relatively unfair comparison. In this paper, we first use three state-of-the-art 3D models (ResNet3D101, DenseNet3D121, and MC3\_18) to establish the baseline performance on three publicly available chest CT scan datasets. Then we propose a differentiable neural architecture search (DNAS) framework to automatically search the 3D DL models for 3D chest CT scans classification and use the Gumbel Softmax technique to improve the search efficiency. We further exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results. The experimental results show that our searched models (CovidNet3D) outperform the baseline human-designed models on three datasets with tens of times smaller model size and higher accuracy. Furthermore, the results also verify that CAM can be well applied in CovidNet3D for COVID-19 datasets to provide interpretability for medical diagnosis. Code: https://github.com/HKBU-HPML/CovidNet3D.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3