Retrospective Reader for Machine Reading Comprehension

Author:

Zhang Zhuosheng,Yang Junjie,Zhao Hai

Abstract

Machine reading comprehension (MRC) is an AI challenge that requires machines to determine the correct answers to questions based on a given passage. MRC systems must not only answer questions when necessary but also tactfully abstain from answering when no answer is available according to the given passage. When unanswerable questions are involved in the MRC task, an essential verification module called verifier is especially required in addition to the encoder, though the latest practice on MRC modeling still mostly benefits from adopting well pre-trained language models as the encoder block by only focusing on the "reading". This paper devotes itself to exploring better verifier design for the MRC task with unanswerable questions. Inspired by how humans solve reading comprehension questions, we proposed a retrospective reader (Retro-Reader) that integrates two stages of reading and verification strategies: 1) sketchy reading that briefly investigates the overall interactions of passage and question, and yields an initial judgment; 2) intensive reading that verifies the answer and gives the final prediction. The proposed reader is evaluated on two benchmark MRC challenge datasets SQuAD2.0 and NewsQA, achieving new state-of-the-art results. Significance tests show that our model is significantly better than strong baselines.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainability for Transparent Conversational Information-Seeking;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. LogSay: An Efficient Comprehension System for Log Numerical Reasoning;IEEE Transactions on Computers;2024-07

3. Multi-Paragraph Machine Reading Comprehension with Hybrid Reader over Tables and Text;Applied Artificial Intelligence;2024-06-19

4. Shaping the Future of Healthcare With BERT in Clinical Text Analytics;Advances in Medical Diagnosis, Treatment, and Care;2024-05-30

5. HCT: Chinese Medical Machine Reading Comprehension Question-Answering via Hierarchically Collaborative Transformer;IEEE Journal of Biomedical and Health Informatics;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3