A Unified Multi-Scenario Attacking Network for Visual Object Tracking

Author:

Chen Xuesong,Fu Canmiao,Zheng Feng,Zhao Yong,Li Hongsheng,Luo Ping,Qi Guo-Jun

Abstract

Existing methods of adversarial attacks successfully generate adversarial examples to confuse Deep Neural Networks (DNNs) of image classification and object detection, resulting in wrong predictions. However, these methods are difficult to attack models of video object tracking, because the tracking algorithms could handle sequential information across video frames and the categories of targets tracked are normally unknown in advance. In this paper, we propose a Unified and Effective Network, named UEN, to attack visual object tracking models. There are several appealing characteristics of UEN: (1) UEN could produce various invisible adversarial perturbations according to different attack settings by using only one simple end-to-end network with three ingenious loss function; (2) UEN could generate general visible adversarial patch patterns to attack the advanced trackers in the real-world; (3) Extensive experiments show that UEN is able to attack many state-of-the-art trackers effectively (e.g. SiamRPN-based networks and DiMP) on popular tracking datasets including OTB100, UAV123, and GOT10K, making online real-time attacks possible. The attack results outperform the introduced baseline in terms of attacking ability and attacking efficiency.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Context-Guided Black-Box Attack for Visual Tracking;IEEE Transactions on Multimedia;2024

2. Pluggable Attack for Visual Object Tracking;IEEE Transactions on Information Forensics and Security;2024

3. Blur-Shift Attack: Deceivng Visual Tracker With Adversarial Blurred Template;2023 4th International Conference on Computers and Artificial Intelligence Technology (CAIT);2023-12-13

4. Bilateral Adversarial Patch Generating Network for the Object Tracking Algorithm;Remote Sensing;2023-07-23

5. Only Once Attack: Fooling the Tracker With Adversarial Template;IEEE Transactions on Circuits and Systems for Video Technology;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3