A User-Adaptive Layer Selection Framework for Very Deep Sequential Recommender Models

Author:

Chen Lei,Yuan Fajie,Yang Jiaxi,Ao Xiang,Li Chengming,Yang Min

Abstract

Sequential recommender systems (SRS) have become a research hotspot in recent studies. Because of the requirement in capturing user's dynamic interests, sequential neural network based recommender models often need to be stacked with more hidden layers (e.g., up to 100 layers) compared with standard collaborative filtering methods. However, the high network latency has become the main obstacle when deploying very deep recommender models into a production environment. In this paper, we argue that the typical prediction framework that treats all users equally during the inference phase is inefficient in running time, as well as sub-optimal in accuracy. To resolve such an issue, we present SkipRec, an adaptive inference framework by learning to skip inactive hidden layers on a per-user basis. Specifically, we devise a policy network to automatically determine which layers should be retained and which layers are allowed to be skipped, so as to achieve user-specific decisions. To derive the optimal skipping policy, we propose using gumbel softmax and reinforcement learning to solve the non-differentiable problem during backpropagation. We perform extensive experiments on three real-world recommendation datasets, and demonstrate that SkipRec attains comparable or better accuracy with much less inference time.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A general tail item representation enhancement framework for sequential recommendation;Frontiers of Computer Science;2023-12-28

2. One Person, One Model—Learning Compound Router for Sequential Recommendation;2022 IEEE International Conference on Data Mining (ICDM);2022-11

3. RT-VeD;Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2022-08-14

4. Item-Provider Co-learning for Sequential Recommendation;Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval;2022-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3