Initiative Defense against Facial Manipulation

Author:

Huang Qidong,Zhang Jie,Zhou Wenbo,Zhang Weiming,Yu Nenghai

Abstract

Benefiting from the development of generative adversarial networks (GAN), facial manipulation has achieved significant progress in both academia and industry recently. It inspires an increasing number of entertainment applications but also incurs severe threats to individual privacy and even political security meanwhile. To mitigate such risks, many countermeasures have been proposed. However, the great majority methods are designed in a passive manner, which is to detect whether the facial images or videos are tampered after their wide propagation. These detection-based methods have a fatal limitation, that is, they only work for ex-post forensics but can not prevent the engendering of malicious behavior. To address the limitation, in this paper, we propose a novel framework of initiative defense to degrade the performance of facial manipulation models controlled by malicious users. The basic idea is to actively inject imperceptible venom into target facial data before manipulation. To this end, we first imitate the target manipulation model with a surrogate model, and then devise a poison perturbation generator to obtain the desired venom. An alternating training strategy are further leveraged to train both the surrogate model and the perturbation generator. Two typical facial manipulation tasks: face attribute editing and face reenactment, are considered in our initiative defense framework. Extensive experiments demonstrate the effectiveness and robustness of our framework in different settings. Finally, we hope this work can shed some light on initiative countermeasures against more adversarial scenarios.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fingerprinting Image-to-Image Generative Adversarial Networks;2024 IEEE 9th European Symposium on Security and Privacy (EuroS&P);2024-07-08

2. Semantic facial features and expression manipulation using multi-level IC-DGAN framework;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Multi-teacher Universal Distillation Based on Information Hiding for Defense Against Facial Manipulation;International Journal of Computer Vision;2024-06-08

4. LOFT: Latent Space Optimization and Generator Fine-Tuning for Defending Against Deepfakes;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

5. Coexistence of Deepfake Defenses: Addressing the Poisoning Challenge;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3