Type-augmented Relation Prediction in Knowledge Graphs

Author:

Cui Zijun,Kapanipathi Pavan,Talamadupula Kartik,Gao Tian,Ji Qiang

Abstract

Knowledge graphs (KGs) are of great importance to many real world applications, but they generally suffer from incomplete information in the form of missing relations between entities. Knowledge graph completion (also known as relation prediction) is the task of inferring missing facts given existing ones. Most of the existing work is proposed by maximizing the likelihood of observed instance-level triples. Not much attention, however, is paid to the ontological information, such as type information of entities and relations. In this work, we propose a type-augmented relation prediction (TaRP) method, where we apply both the type information and instance-level information for the relation prediction. In particular, type information and instance-level information are encoded as prior probabilities and likelihoods of relations respectively, and are combined by following the Bayes' rule. Our proposed TaRP method achieves significantly better performance than state-of-the-art methods on four benchmark datasets: FB15K, FB15K-237, YAGO26K-906, and DB111K-174. In addition, we show that the TaRP achieves the significantly improved data efficiency. More importantly, the type information extracted from a specific dataset can generalize well to different datasets through the proposed TaRP model.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Embedding Two-View Knowledge Graphs with Class Inheritance and Structural Similarity;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Geometric-Contextual Mutual Infomax Path Aggregation for Relation Reasoning on Knowledge Graph;IEEE Transactions on Knowledge and Data Engineering;2024-07

3. Query2GMM: Learning Representation with Gaussian Mixture Model for Reasoning over Knowledge Graphs;Proceedings of the ACM Web Conference 2024;2024-05-13

4. Treat Different Negatives Differently: Enriching Loss Functions with Domain and Range Constraints for Link Prediction;Lecture Notes in Computer Science;2024

5. Knowledge Graph Completion Using Structural and Textual Embeddings;IFIP Advances in Information and Communication Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3