Author:
Kim Jungeun,Lee Kookjin,Lee Dongeun,Jhin Sheo Yon,Park Noseong
Abstract
We present a method for learning dynamics of complex physical processes described by time-dependent nonlinear partial differential equations (PDEs). Our particular interest lies in extrapolating solutions in time beyond the range of temporal domain used in training. Our choice for a baseline method is physics-informed neural network (PINN) because the method parameterizes not only the solutions, but also the equations that describe the dynamics of physical processes. We demonstrate that PINN performs poorly on extrapolation tasks in many benchmark problems. To address this, we propose a novel method for better training PINN and demonstrate that our newly enhanced PINNs can accurately extrapolate solutions in time. Our method shows up to 72% smaller errors than state-of-the-art methods in terms of the standard L2-norm metric.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献