Enabling Fast and Universal Audio Adversarial Attack Using Generative Model

Author:

Xie Yi,Li Zhuohang,Shi Cong,Liu Jian,Chen Yingying,Yuan Bo

Abstract

Recently, the vulnerability of deep neural network (DNN)-based audio systems to adversarial attacks has obtained increasing attention. However, the existing audio adversarial attacks allow the adversary to possess the entire user's audio input as well as granting sufficient time budget to generate the adversarial perturbations. These idealized assumptions, however, make the existing audio adversarial attacks mostly impossible to be launched in a timely fashion in practice (e.g., playing unnoticeable adversarial perturbations along with user's streaming input). To overcome these limitations, in this paper we propose fast audio adversarial perturbation generator (FAPG), which uses generative model to generate adversarial perturbations for the audio input in a single forward pass, thereby drastically improving the perturbation generation speed. Built on the top of FAPG, we further propose universal audio adversarial perturbation generator (UAPG), a scheme to craft universal adversarial perturbation that can be imposed on arbitrary benign audio input to cause misclassification. Extensive experiments on DNN-based audio systems show that our proposed FAPG can achieve high success rate with up to 214X speedup over the existing audio adversarial attack methods. Also our proposed UAPG generates universal adversarial perturbations that can achieve much better attack performance than the state-of-the-art solutions.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Evaluating the Robustness of Automatic Speech Recognition Systems via Audio Style Transfer;Proceedings of the 2nd ACM Workshop on Secure and Trustworthy Deep Learning Systems;2024-07-02

2. CommanderUAP: a practical and transferable universal adversarial attacks on speech recognition models;Cybersecurity;2024-06-05

3. LCANets++: Robust Audio Classification Using Multi-Layer Neural Networks with Lateral Competition;2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW);2024-04-14

4. Universal Adversarial Attack Against Speaker Recognition Models;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

5. An efficient low-perceptual environmental sound classification adversarial method based on GAN;Multimedia Tools and Applications;2024-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3