Abstract
Shared on-demand mobility holds immense potential for urban transportation. However, finding ride matches in real-time at urban scale is a very difficult combinatorial optimization problem and mostly heuristic approaches are applied. In this work, we introduce a principled approach to this combinatorial problem. Our approach proceeds by constructing suitable representations for rides and driver routes capturing their essential spatio-temporal aspects in an appropriate vector space, and defining a similarity metric in this space that expresses matching utility. This then lets us mathematically model the problem of finding ride matches as that of Near Neighbor Search (NNS). Exploiting this modeling, we devise a novel spatio-temporal search algorithm for finding ride matches based on the theory of Locality Sensitive Hashing (LSH). Apart from being highly efficient, our algorithm enjoys several practically useful properties and extension possibilities. Experiments with large real-world datasets show that our algorithm consistently outperforms state-of-the-art heuristic methods thereby proving its practical applicability.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Survey of Machine Learning-Based Ride-Hailing Planning;IEEE Transactions on Intelligent Transportation Systems;2024-06
2. ElasticShare: Ridesharing Order Dispatching with Dynamic Supply-demand Distribution;2023 IEEE/ACM 31st International Symposium on Quality of Service (IWQoS);2023-06-19