Deep Multi-Task Learning for Diabetic Retinopathy Grading in Fundus Images

Author:

Wang Xiaofei,Xu Mai,Zhang Jicong,Jiang Lai,Li Liu

Abstract

Recent years have witnessed the growing interest in disease severity grading, especially for ocular diseases based on fundus images. The existing grading methods are usually trained with high resolution (HR) images. However, the grading performance decreases a lot given low resolution (LR) images, which are common in practice. In this paper, we mainly focus on diabetic retinopathy (DR) grading with LR fundus images. According to our analysis on the DR task, we find that: 1) image super-resolution (ISR) can boost the performance of DR grading and lesion segmentation; 2) the lesion segmentation regions of fundus images are highly consistent with pathological regions for DR grading. Thus, we propose a deep multi-task learning based DR grading (DeepMT-DR) method for LR fundus images, which simultaneously handles the auxiliary tasks of ISR and lesion segmentation. Specifically, based on our findings, we propose a hierarchical deep learning structure that simultaneously processes the low-level task of ISR, the mid-level task of lesion segmentation and the high-level task of DR grading. Moreover, a novel task-aware loss is developed to encourage ISR to focus on the pathological regions for its subsequent tasks: lesion segmentation and DR grading. Extensive experimental results show that our DeepMT-DR method significantly outperforms other state-of-the-art methods for DR grading over two public datasets. In addition, our method achieves comparable performance in two auxiliary tasks of ISR and lesion segmentation.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3