Hybrid Heterogeneous Transfer Learning through Deep Learning

Author:

Zhou Joey,Pan Sinno,Tsang Ivor,Yan Yan

Abstract

Most previous heterogeneous transfer learning methods learn a cross-domain feature mapping between heterogeneous feature spaces based on a few cross-domain instance-correspondences, and these corresponding instances are assumed to be representative in the source and target domains respectively. However, in many real-world scenarios, this assumption may not hold. As a result, the constructed feature mapping may not be precisely due to the bias issue of the correspondences in the target or (and) source domain(s). In this case, a classifier trained on the labeled transformed-source-domain data may not be useful for the target domain. In this paper, we present a new transfer learning framework called Hybrid Heterogeneous Transfer Learning (HHTL), which allows the corresponding instances across domains to be biased in either the source or target domain. Specifically, we propose a deep learning approach to learn a feature mapping between cross-domain heterogeneous features as well as a better feature representation for mapped data to reduce the bias issue caused by the cross-domain correspondences. Extensive experiments on several multilingual sentiment classification tasks verify the effectiveness of our proposed approach compared with some baseline methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Domain Adaptive Driver Distraction Detection Based on Partial Feature Alignment and Confusion-Minimized Classification;IEEE Transactions on Intelligent Transportation Systems;2024-09

2. A systematic review of transfer learning in software engineering;Multimedia Tools and Applications;2024-07-27

3. Transferable aircraft trajectory prediction with generative deep imitation learning;International Journal of Data Science and Analytics;2024-06-10

4. Optimizing deep reinforcement learning in data-scarce domains: a cross-domain evaluation of double DQN and dueling DQN;International Journal of System Assurance Engineering and Management;2024-05-02

5. Transfer Learning Using Musical Instrument Audio for Improving Automatic Singing Label Calibration;IEEJ Transactions on Electrical and Electronic Engineering;2024-02-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3