Author:
Zhang Yuyu,Dai Hanjun,Xu Chang,Feng Jun,Wang Taifeng,Bian Jiang,Wang Bin,Liu Tie-Yan
Abstract
Click prediction is one of the fundamental problems in sponsored search. Most of existing studies took advantage of machine learning approaches to predict ad click for each event of ad view independently. However, as observed in the real-world sponsored search system, user's behaviors on ads yield high dependency on how the user behaved along with the past time, especially in terms of what queries she submitted, what ads she clicked or ignored, and how long she spent on the landing pages of clicked ads, etc. Inspired by these observations, we introduce a novel framework based on Recurrent Neural Networks (RNN). Compared to traditional methods, this framework directly models the dependency on user's sequential behaviors into the click prediction process through the recurrent structure in RNN. Large scale evaluations on the click-through logs from a commercial search engine demonstrate that our approach can significantly improve the click prediction accuracy, compared to sequence-independent approaches.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献