SpreadGNN: Decentralized Multi-Task Federated Learning for Graph Neural Networks on Molecular Data

Author:

He Chaoyang,Ceyani Emir,Balasubramanian Keshav,Annavaram Murali,Avestimehr Salman

Abstract

Graph Neural Networks (GNNs) are the first choice methods for graph machine learning problems thanks to their ability to learn state-of-the-art level representations from graph-structured data. However, centralizing a massive amount of real-world graph data for GNN training is prohibitive due to user-side privacy concerns, regulation restrictions, and commercial competition. Federated Learning is the de-facto standard for collaborative training of machine learning models over many distributed edge devices without the need for centralization. Nevertheless, training graph neural networks in a federated setting is vaguely defined and brings statistical and systems challenges. This work proposes SpreadGNN, a novel multi-task federated training framework capable of operating in the presence of partial labels and absence of a central server for the first time in the literature. We provide convergence guarantees and empirically demonstrate the efficacy of our framework on a variety of non-I.I.D. distributed graph-level molecular property prediction datasets with partial labels. Our results show that SpreadGNN outperforms GNN models trained over a central server-dependent federated learning system, even in constrained topologies.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Federated Multi-Task Learning on Non-IID Data Silos: An Experimental Study;Proceedings of the 2024 International Conference on Multimedia Retrieval;2024-05-30

2. SpreadFGL: Edge-Client Collaborative Federated Graph Learning with Adaptive Neighbor Generation;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

3. Infrared spectroscopy based Cordyceps authenticity detection and multi-classification tasks by privacy-preserving federated learning;Microchemical Journal;2024-04

4. Privacy-Preserving Individual-Level COVID-19 Infection Prediction via Federated Graph Learning;ACM Transactions on Information Systems;2024-01-22

5. Privacy-Preserving Multi-Label Propagation Based on Federated Learning;IEEE Transactions on Network Science and Engineering;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3