AFDetV2: Rethinking the Necessity of the Second Stage for Object Detection from Point Clouds

Author:

Hu Yihan,Ding Zhuangzhuang,Ge Runzhou,Shao Wenxin,Huang Li,Li Kun,Liu Qiang

Abstract

There have been two streams in the 3D detection from point clouds: single-stage methods and two-stage methods. While the former is more computationally efficient, the latter usually provides better detection accuracy. By carefully examining the two-stage approaches, we have found that if appropriately designed, the first stage can produce accurate box regression. In this scenario, the second stage mainly rescores the boxes such that the boxes with better localization get selected. From this observation, we have devised a single-stage anchor-free network that can fulfill these requirements. This network, named AFDetV2, extends the previous work by incorporating a self-calibrated convolution block in the backbone, a keypoint auxiliary supervision, and an IoU prediction branch in the multi-task head. We take a simple product of the predicted IoU score with the classification heatmap to form the final classification confidence. The enhanced backbone strengthens the box localization capability, and the rescoring approach effectively joins the object presence confidence and the box regression accuracy. As a result, the detection accuracy is drastically boosted in the single-stage. To evaluate our approach, we have conducted extensive experiments on the Waymo Open Dataset and the nuScenes Dataset. We have observed that our AFDetV2 achieves the state-of-the-art results on these two datasets, superior to all the prior arts, including both the single-stage and the two-stage 3D detectors. AFDetV2 won the 1st place in the Real-Time 3D Detection of the Waymo Open Dataset Challenge 2021. In addition, a variant of our model AFDetV2-Base was entitled the "Most Efficient Model" by the Challenge Sponsor, showing a superior computational efficiency. To demonstrate the generality of this single-stage method, we have also applied it to the first stage of the two-stage networks. Without exception, the results show that with the strengthened backbone and the rescoring approach, the second stage refinement is no longer needed.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrating explainable AI and depth cameras to achieve automation in grasping Operations: A case study of shoe company;Advanced Engineering Informatics;2024-10

2. Practical Collaborative Perception: A Framework for Asynchronous and Multi-Agent 3D Object Detection;IEEE Transactions on Intelligent Transportation Systems;2024-09

3. MMFG: Multimodal-based Mutual Feature Gating 3D Object Detection;Journal of Intelligent & Robotic Systems;2024-06-07

4. Fine-Grained Pillar Feature Encoding Via Spatio-Temporal Virtual Grid for 3D Object Detection;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. Cross-Cluster Shifting for Efficient and Effective 3D Object Detection in Autonomous Driving;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3