Transformer-Based Unsupervised Learning for Early Detection of Sepsis (Student Abstract)

Author:

Dou Yutao,Li Wei,Zomaya Albert Y.

Abstract

A 6-hour early detection of sepsis leads to a significant increase in the chance of surviving it. Previous sepsis early detection studies have focused on improving the performance of supervised learning algorithms while ignoring the potential correlation in data mining, and there was no reliable method to deal with the problem of incomplete data. In this paper, we proposed the Denoising Transformer AutoEncoder (DTAE) for the first time combining transformer and unsupervised learning. DTAE can learn the correlation of the features required for early detection of sepsis without the label. This method can effectively solve the problems of data sparsity and noise and discover the potential correlation of features by adding DTAE enhancement module without modifying the existing algorithms. Finally, the experimental results show that the proposed method improves the existing algorithms and achieves the best results of early detection.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feature augmentation and semi-supervised conditional transfer learning for early detection of sepsis;Computers in Biology and Medicine;2023-10

2. Grid Transient Simulation Using Attention-Based Data Augmentation Technique with Supercomputing;2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT);2023-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3