Lifelong Person Re-identification by Pseudo Task Knowledge Preservation

Author:

Ge Wenhang,Du Junlong,Wu Ancong,Xian Yuqiao,Yan Ke,Huang Feiyue,Zheng Wei-Shi

Abstract

In real world, training data for person re-identification (Re-ID) is collected discretely with spatial and temporal variations, which requires a model to incrementally learn new knowledge without forgetting old knowledge. This problem is called lifelong person re-identification (LReID). Variations of illumination and background for images of each task exhibit task-specific image style and lead to task-wise domain gap. In addition to missing data from the old tasks, task-wise domain gap is a key factor for catastrophic forgetting in LReID, which is ignored in existing approaches for LReID. The model tends to learn task-specific knowledge with task-wise domain gap, which results in stability and plasticity dilemma. To overcome this problem, we cast LReID as a domain adaptation problem and propose a pseudo task knowledge preservation framework to alleviate the domain gap. Our framework is based on a pseudo task transformation module which maps the features of the new task into the feature space of the old tasks to complement the limited saved exemplars of the old tasks. With extra transformed features in the task-specific feature space, we propose a task-specific domain consistency loss to implicitly alleviate the task-wise domain gap for learning task-shared knowledge instead of task-specific one. Furthermore, to guide knowledge preservation with the feature distributions of the old tasks, we propose to preserve knowledge on extra pseudo tasks which jointly distills knowledge and discriminates identity, in order to achieve a better trade-off between stability and plasticity for lifelong learning with task-wise domain gap. Extensive experiments demonstrate the superiority of our method as compared with the state-of-the-art lifelong learning and LReID methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lifelong Visible-Infrared Person Re-Identification via a Tri-Token Transformer with a Query-Key Mechanism;Proceedings of the 2024 International Conference on Multimedia Retrieval;2024-05-30

2. Exemplar-Free Lifelong Person Re-identification via Prompt-Guided Adaptive Knowledge Consolidation;International Journal of Computer Vision;2024-05-27

3. Domain-adaptive person re-identification via domain alignment and mutual pseudo-label refinement;Multimedia Systems;2024-04

4. Cross-domain joint learning and shared subspace metric for vehicle re-identification;Journal of Image and Graphics;2024

5. Robust Batch Relation Preserving for Lifelong Unsupervised Domain Adaptation;2023 International Conference on Intelligent Education and Intelligent Research (IEIR);2023-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3