SyncTalkFace: Talking Face Generation with Precise Lip-Syncing via Audio-Lip Memory

Author:

Park Se Jin,Kim Minsu,Hong Joanna,Choi Jeongsoo,Ro Yong Man

Abstract

The challenge of talking face generation from speech lies in aligning two different modal information, audio and video, such that the mouth region corresponds to input audio. Previous methods either exploit audio-visual representation learning or leverage intermediate structural information such as landmarks and 3D models. However, they struggle to synthesize fine details of the lips varying at the phoneme level as they do not sufficiently provide visual information of the lips at the video synthesis step. To overcome this limitation, our work proposes Audio-Lip Memory that brings in visual information of the mouth region corresponding to input audio and enforces fine-grained audio-visual coherence. It stores lip motion features from sequential ground truth images in the value memory and aligns them with corresponding audio features so that they can be retrieved using audio input at inference time. Therefore, using the retrieved lip motion features as visual hints, it can easily correlate audio with visual dynamics in the synthesis step. By analyzing the memory, we demonstrate that unique lip features are stored in each memory slot at the phoneme level, capturing subtle lip motion based on memory addressing. In addition, we introduce visual-visual synchronization loss which can enhance lip-syncing performance when used along with audio-visual synchronization loss in our model. Extensive experiments are performed to verify that our method generates high-quality video with mouth shapes that best align with the input audio, outperforming previous state-of-the-art methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CMFF-Face: Attention-Based Cross-Modal Feature Fusion for High-Quality Audio-Driven Talking Face Generation;Proceedings of the 2024 International Conference on Multimedia Retrieval;2024-05-30

2. Lip and Speech Synchronization using Supervised Contrastive Learning and Cross-Modal Attention;2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG);2024-05-27

3. Multimodal Synchronization Detection: A Transformer-Based Approach Using Deep Metric Learning;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03

4. Text-Driven Talking Face Synthesis by Reprogramming Audio-Driven Models;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

5. Exploring Phonetic Context-Aware Lip-Sync for Talking Face Generation;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3