(2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering

Author:

Cherian Anoop,Hori Chiori,Marks Tim K.,Le Roux Jonathan

Abstract

Spatio-temporal scene-graph approaches to video-based reasoning tasks, such as video question-answering (QA), typically construct such graphs for every video frame. These approaches often ignore the fact that videos are essentially sequences of 2D ``views'' of events happening in a 3D space, and that the semantics of the 3D scene can thus be carried over from frame to frame. Leveraging this insight, we propose a (2.5+1)D scene graph representation to better capture the spatio-temporal information flows inside the videos. Specifically, we first create a 2.5D (pseudo-3D) scene graph by transforming every 2D frame to have an inferred 3D structure using an off-the-shelf 2D-to-3D transformation module, following which we register the video frames into a shared (2.5+1)D spatio-temporal space and ground each 2D scene graph within it. Such a (2.5+1)D graph is then segregated into a static sub-graph and a dynamic sub-graph, corresponding to whether the objects within them usually move in the world. The nodes in the dynamic graph are enriched with motion features capturing their interactions with other graph nodes. Next, for the video QA task, we present a novel transformer-based reasoning pipeline that embeds the (2.5+1)D graph into a spatio-temporal hierarchical latent space, where the sub-graphs and their interactions are captured at varied granularity. To demonstrate the effectiveness of our approach, we present experiments on the NExT-QA and AVSD-QA datasets. Our results show that our proposed (2.5+1)D representation leads to faster training and inference, while our hierarchical model showcases superior performance on the video QA task versus the state of the art.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cascade transformers with dynamic attention for video question answering;Computer Vision and Image Understanding;2024-05

2. Event Graph Guided Compositional Spatial–Temporal Reasoning for Video Question Answering;IEEE Transactions on Image Processing;2024

3. Graph Neural Network for Spatiotemporal Data: Methods and Applications;2024

4. Contrastive Video Question Answering via Video Graph Transformer;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-11-01

5. Constructing Holistic Spatio-Temporal Scene Graph for Video Semantic Role Labeling;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3