MAPF-LNS2: Fast Repairing for Multi-Agent Path Finding via Large Neighborhood Search

Author:

Li Jiaoyang,Chen Zhe,Harabor Daniel,Stuckey Peter J.,Koenig Sven

Abstract

Multi-Agent Path Finding (MAPF) is the problem of planning collision-free paths for multiple agents in a shared environment. In this paper, we propose a novel algorithm MAPF-LNS2 based on large neighborhood search for solving MAPF efficiently. Starting from a set of paths that contain collisions, MAPF-LNS2 repeatedly selects a subset of colliding agents and replans their paths to reduce the number of collisions until the paths become collision-free. We compare MAPF-LNS2 against a variety of state-of-the-art MAPF algorithms, including Prioritized Planning with random restarts, EECBS, and PPS, and show that MAPF-LNS2 runs significantly faster than them while still providing near-optimal solutions in most cases. MAPF-LNS2 solves 80% of the random-scenario instances with the largest number of agents from the MAPF benchmark suite with a runtime limit of just 5 minutes, which, to our knowledge, has not been achieved by any existing algorithms.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Puzzle Heuristics: Efficient Lifelong Multi-Agent Pathfinding Algorithm for Large-scale Challenging Environments;Journal of Korea Robotics Society;2024-08-31

2. MT-SIPP: An Efficient Collision-Free Multi-Chain Robot Path Planning Algorithm;Machines;2024-07-17

3. An Accelerative Method for Multi-Agent Path Finding Considering Shapes;Proceedings of the 2024 3rd International Symposium on Robotics, Artificial Intelligence and Information Engineering;2024-07-05

4. Optimal time reuse strategy-based dynamic multi-AGV path planning method;Complex & Intelligent Systems;2024-07-03

5. Adaptive Lifelong Multi-Agent Path Finding With Multiple Priorities;IEEE Robotics and Automation Letters;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3