Author:
Li Jiaoyang,Chen Zhe,Harabor Daniel,Stuckey Peter J.,Koenig Sven
Abstract
Multi-Agent Path Finding (MAPF) is the problem of planning collision-free paths for multiple agents in a shared environment. In this paper, we propose a novel algorithm MAPF-LNS2 based on large neighborhood search for solving MAPF efficiently. Starting from a set of paths that contain collisions, MAPF-LNS2 repeatedly selects a subset of colliding agents and replans their paths to reduce the number of collisions until the paths become collision-free. We compare MAPF-LNS2 against a variety of state-of-the-art MAPF algorithms, including Prioritized Planning with random restarts, EECBS, and PPS, and show that MAPF-LNS2 runs significantly faster than them while still providing near-optimal solutions in most cases. MAPF-LNS2 solves 80% of the random-scenario instances with the largest number of agents from the MAPF benchmark suite with a runtime limit of just 5 minutes, which, to our knowledge, has not been achieved by any existing algorithms.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献