Learning Optical Flow with Adaptive Graph Reasoning

Author:

Luo Ao,Yang Fan,Luo Kunming,Li Xin,Fan Haoqiang,Liu Shuaicheng

Abstract

Estimating per-pixel motion between video frames, known as optical flow, is a long-standing problem in video understanding and analysis. Most contemporary optical flow techniques largely focus on addressing the cross-image matching with feature similarity, with few methods considering how to explicitly reason over the given scene for achieving a holistic motion understanding. In this work, taking a fresh perspective, we introduce a novel graph-based approach, called adaptive graph reasoning for optical flow (AGFlow), to emphasize the value of scene/context information in optical flow. Our key idea is to decouple the context reasoning from the matching procedure, and exploit scene information to effectively assist motion estimation by learning to reason over the adaptive graph. The proposed AGFlow can effectively exploit the context information and incorporate it within the matching procedure, producing more robust and accurate results. On both Sintel clean and final passes, our AGFlow achieves the best accuracy with EPE of 1.43 and 2.47 pixels, outperforming state-of-the-art approaches by 11.2% and 13.6%, respectively. Code is publicly available at https://github.com/megvii-research/AGFlow.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contextual Visual and Motion Salient Fusion Framework for Action Recognition in Dark Environments;Knowledge-Based Systems;2024-09

2. Searching a Compact Architecture for Robust Multi-Exposure Image Fusion;IEEE Transactions on Circuits and Systems for Video Technology;2024-07

3. ISFP: Iterative Simultaneous Optical Flow Estimation and Interest Points Extraction Network;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. Rethinking RAFT for Efficient Optical Flow;2024 13th Iranian/3rd International Machine Vision and Image Processing Conference (MVIP);2024-03-06

5. Joint self-supervised learning of interest point, descriptor, depth, and ego-motion from monocular video;Multimedia Tools and Applications;2024-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3