Mitigating Reporting Bias in Semi-supervised Temporal Commonsense Inference with Probabilistic Soft Logic

Author:

Cai Bibo,Ding Xiao,Chen Bowen,Du Li,Liu Ting

Abstract

Acquiring high-quality temporal common sense (TCS) knowledge from free-form text is a crucial but challenging problem for event-centric natural language understanding, due to the language reporting bias problem: people rarely report the commonly observed events but highlight the special cases. For example, one may rarely report "I get up from bed in 1 minute", but we can observe "It takes me an hour to get up from bed every morning'' in text. Models directly trained upon such corpus would capture distorted TCS knowledge, which could influence the model performance. Prior work addresses this issue mainly by exploiting the interactions among temporal dimensions (e.g., duration, temporal relation between events) in a multi-task view. However, this line of work suffers the limitation of implicit, inadequate and unexplainable interactions modeling. In this paper, we propose a novel neural-logic based Soft Logic Enhanced Event Temporal Reasoning (SLEER) model for acquiring unbiased TCS knowledge, in which the complementary relationship among dimensions are explicitly represented as logic rules and modeled by t-norm fuzzy logics. SLEER can utilize logic rules to regularize its inference process. Experimental results on four intrinsic evaluation datasets and two extrinsic datasets show the efficiency of our proposed method.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial Knowledge-Infused Hierarchical Learning: An Application in Flood Mapping on Earth Imagery;Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems;2023-11-13

2. Machine Ethics Research: Promises and Potential Pitfalls;IEEE Intelligent Systems;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3