Attribute-Based Progressive Fusion Network for RGBT Tracking

Author:

Xiao Yun,Yang MengMeng,Li Chenglong,Liu Lei,Tang Jin

Abstract

RGBT tracking usually suffers from various challenge factors, such as fast motion, scale variation, illumination variation, thermal crossover and occlusion, to name a few. Existing works often study fusion models to solve all challenges simultaneously, and it requires fusion models complex enough and training data large enough, which are usually difficult to be constructed in real-world scenarios. In this work, we disentangle the fusion process via the challenge attributes, and thus propose a novel Attribute-based Progressive Fusion Network (APFNet) to increase the fusion capacity with a small number of parameters while reducing the dependence on large-scale training data. In particular, we design five attribute-specific fusion branches to integrate RGB and thermal features under the challenges of thermal crossover, illumination variation, scale variation, occlusion and fast motion respectively. By disentangling the fusion process, we can use a small number of parameters for each branch to achieve robust fusion of different modalities and train each branch using the small training subset with the corresponding attribute annotation. Then, to adaptive fuse features of all branches, we design an aggregation fusion module based on SKNet. Finally, we also design an enhancement fusion transformer to strengthen the aggregated feature and modality-specific features. Experimental results on benchmark datasets demonstrate the effectiveness of our APFNet against other state-of-the-art methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3