Shaping Noise for Robust Attributions in Neural Stochastic Differential Equations

Author:

Jha Sumit Kumar,Ewetz Rickard,Velasquez Alvaro,Ramanathan Arvind,Jha Susmit

Abstract

Neural SDEs with Brownian motion as noise lead to smoother attributions than traditional ResNets. Various attribution methods such as saliency maps, integrated gradients, DeepSHAP and DeepLIFT have been shown to be more robust for neural SDEs than for ResNets using the recently proposed sensitivity metric. In this paper, we show that neural SDEs with adaptive attribution-driven noise lead to even more robust attributions and smaller sensitivity metrics than traditional neural SDEs with Brownian motion as noise. In particular, attribution-driven shaping of noise leads to 6.7%, 6.9% and 19.4% smaller sensitivity metric for integrated gradients computed on three discrete approximations of neural SDEs with standard Brownian motion noise: stochastic ResNet-50, WideResNet-101 and ResNeXt-101 models respectively. The neural SDE model with adaptive attribution-driven noise leads to 25.7% and 4.8% improvement in the SIC metric over traditional ResNets and Neural SDEs with Brownian motion as noise. To the best of our knowledge, we are the first to propose the use of attributions for shaping the noise injected in neural SDEs, and demonstrate that this process leads to more robust attributions than traditional neural SDEs with standard Brownian motion as noise.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural SDEs for Robust and Explainable Analysis of Electromagnetic Unintended Radiated Emissions;MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM);2023-10-30

2. Lightning Talk: Trinity - Assured Neuro-symbolic Model Inspired by Hierarchical Predictive Coding;2023 60th ACM/IEEE Design Automation Conference (DAC);2023-07-09

3. Dehallucinating Large Language Models Using Formal Methods Guided Iterative Prompting;2023 IEEE International Conference on Assured Autonomy (ICAA);2023-06

4. Verifying Attention Robustness of Deep Neural Networks Against Semantic Perturbations;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3