Author:
Jha Sumit Kumar,Ewetz Rickard,Velasquez Alvaro,Ramanathan Arvind,Jha Susmit
Abstract
Neural SDEs with Brownian motion as noise lead to smoother attributions than traditional ResNets. Various attribution methods such as saliency maps, integrated gradients, DeepSHAP and DeepLIFT have been shown to be more robust for neural SDEs than for ResNets using the recently proposed sensitivity metric. In this paper, we show that neural SDEs with adaptive attribution-driven noise lead to even more robust attributions and smaller sensitivity metrics than traditional neural SDEs with Brownian motion as noise. In particular, attribution-driven shaping of noise leads to 6.7%, 6.9% and 19.4% smaller sensitivity metric for integrated gradients computed on three discrete approximations of neural SDEs with standard Brownian motion noise: stochastic ResNet-50, WideResNet-101 and ResNeXt-101 models respectively. The neural SDE model with adaptive attribution-driven noise leads to 25.7% and 4.8% improvement in the SIC metric over traditional ResNets and Neural SDEs with Brownian motion as noise. To the best of our knowledge, we are the first to propose the use of attributions for shaping the noise injected in neural SDEs, and demonstrate that this process leads to more robust attributions than traditional neural SDEs with standard Brownian motion as noise.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献