Accurate and Scalable Gaussian Processes for Fine-Grained Air Quality Inference

Author:

Patel Zeel B,Purohit Palak,Patel Harsh M,Sahni Shivam,Batra Nipun

Abstract

Air pollution is a global problem and severely impacts human health. Fine-grained air quality (AQ) monitoring is important in mitigating air pollution. However, existing AQ station deployments are sparse. Conventional interpolation techniques fail to learn the complex AQ phenomena. Physics-based models require domain knowledge and pollution source data for AQ modeling. In this work, we propose a Gaussian processes based approach for estimating AQ. The important features of our approach are: a) a non-stationary (NS) kernel to allow input depended smoothness of fit; b) a Hamming distance-based kernel for categorical features; and c) a locally periodic kernel to capture temporal periodicity. We leverage batch-wise training to scale our approach to a large amount of data. Our approach outperforms the conventional baselines and a state-of-the-art neural attention-based approach.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PM2.5 prediction based on dynamic spatiotemporal graph neural network;Applied Intelligence;2024-09-05

2. Deep Citywide Multisource Data Fusion-Based Air Quality Estimation;IEEE Transactions on Cybernetics;2024-01

3. Heuristic Online Path Planning for Mobile Air Purification and Disinfection Robot In Regulating Indoor Air Quality;2023 IEEE International Conference on Robotics and Biomimetics (ROBIO);2023-12-04

4. Graph Neural Processes for Spatio-Temporal Extrapolation;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

5. Deep Gaussian Processes for Air Quality Inference;Proceedings of the 6th Joint International Conference on Data Science & Management of Data (10th ACM IKDD CODS and 28th COMAD);2023-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3