An Online Learning Approach to Sequential User-Centric Selection Problems

Author:

Chen Junpu,Xie Hong

Abstract

This paper proposes a new variant of multi-play MAB model, to capture important factors of the sequential user-centric selection problem arising from mobile edge computing, ridesharing applications, etc. In the proposed model, each arm is associated with discrete units of resources, each play is associate with movement costs and multiple plays can pull the same arm simultaneously. To learn the optimal action profile (an action profile prescribes the arm that each play pulls), there are two challenges: (1) the number of action profiles is large, i.e., M^K, where K and M denote the number of plays and arms respectively; (2) feedbacks on action profiles are not available, but instead feedbacks on some model parameters can be observed. To address the first challenge, we formulate a completed weighted bipartite graph to capture key factors of the offline decision problem with given model parameters. We identify the correspondence between action profiles and a special class of matchings of the graph. We also identify a dominance structure of this class of matchings. This correspondence and dominance structure enable us to design an algorithm named OffOptActPrf to locate the optimal action efficiently. To address the second challenge, we design an OnLinActPrf algorithm. We design estimators for model parameters and use these estimators to design a Quasi-UCB index for each action profile. The OnLinActPrf uses OffOptActPrf as a subroutine to select the action profile with the largest Quasi-UCB index. We conduct extensive experiments to validate the efficiency of OnLinActPrf.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Thompson Sampling Approach to User-centric Selection Problems;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3